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S U M M A R Y  
The method of homogeneous solutions is applied to the problem of elastodynamic crack propagation from the vertex 
of a wedge. The method is based on the observation that the particle velocity is self-similar. A closed form solution is 
obtained giving the shear stress and particle velocity in the vicinity of the moving crack tip. The corresponding quasi- 
static problem is also examined and it is found that the stress intensity factor for the quasi-static case is equal to that 
for the dynamic case when the velocity of crack propagation is very low compared to the shear wave velocity. 

1. Introduction 

When the surfaces of the wedge are subjected to spatially uniform but time-dependent shear 
tractions, the type of singularity generated at the vertex of the wedge is of the form r l /x-  1, see 
Achenbach [ 1]. However, it can be shown that the singularity for the case of sudden application 
of anti-plane displacements is stronger and is in the form of r-  1. In this paper, it is assumed that 
this strong singularity causes the appearance of a crack at the vertex of the wedge. The crack 
subsequently propagates with constant velocity v into the medium in the direction symmetric 
to the faces of the wedge. 

The shear stresses and the particle velocity in the vicinity of the moving crack tip are deter- 
mined. The dynamic stress intensity factor is evaluated. Two special cases are also studied: 
(i) propagation of a perpendicular edge crack from a half-plane and (ii) propagation of crack 
in its own place. Quasi-static case is also examined and it is found that the shear stress in the 
vicinity of the crack tip for the quasi-static case is equal to that for the dynamic case when the 
velocity of crack propagation is very low compared to the shear wave velocity. 

The elastodynamic problem is solved by the method of homogeneous solutions which has 
been extensively used in crack propagation problems (see, for example, Achenbach [2] and 
Achenbach and Varatharajulu [3]). The method is briefly discussed for wave propagation 
problems by Miles [4] and Achenbach [-5]. The crucial step in the method is the application of 
Chaplygin's transformation which reduces the wave equation to Laplace's equation. The 
resulting boundary value problem is solved by the theory of complex variables. 

2. Formulation of the problem 

An isotropic, homogeneous, linearly elastic wedge with included angle of 2 ~ ,  see Figure 1, 
is subjected to the following anti-plane surface disturbances: 

0 = O: w = W o t H ( t ) ,  (2.1) 
0 = 2nrc: w = -- W o t H ( t ) ,  (2.2) 

where w is the out-of-plane displacement, t is time and H ( ) is the Heaviside step function. 
The surface disturbances generate two-dimensional horizontally polarized wave motions which 
are governed by 

0 2 w/Ox 2 + 0 2 w / a Y  2 = (1/c2)a z w / &  2 , (2.3) 
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where c is the velocity of transverse waves 

c = ( # / p ) ~ .  (2.4) 

In (2.4) # and p are the shear moduius and the mass density, respectively. The surface distur- 
bances give rise to plane waves which propagate into the material. In addition a cylindrical 
wave with center at the vertex O is generated, due to the discontinuity in the boundary conditions 
at point O. 

It can be shown by employing the method of homogeneous solutions that the discontinuity 
in surface displacements implied by (2.1) and (2.2) gives rise to shear stress %z of the following 
form in the vicinity of the vertex of the wedge: 

2/~W 0 ~z c o s  O rl/(2~r - 1 # W 0  ZOz ~ - -  (2ct)- 1/<2,) cos ~ + - - .  (2.5) 

In this paper it is assumed that the singularity given by (2.5) causes the appearance of a crack 
at the singular point O, at the instant that the mechanical disturbances are applied to the surfaces 
of the wedge. The crack subsequently propagates with a constant velocity v, where v < c, under 
an angle n~z with the surface 0 = 0 of the wedge. Thus at time t > 0 the crack tip is located at the 
point D, defined by r =  vt ,  0 = z~c, see Figure 1. Note that P and Q denote the surface trace of 
the crack, but at different sides of the fracture surface. The positions of the plane wavefronts, 
EB and GH, and of the cylindrical wavefront, ABGF, are also indicated in Figure 1. The moving 

A F 

V ! H 

/r /r 

c 
Figure 1. Pattern of wavefronts for t > 0. 

crack tip also generates waves. However the analysis of these waves is imbedded in the wave 
analysis of the cylindrical wave centered at O. The problem posed, thus, requires the solution 
of the wave equation satisfying boundary conditions at the cylindrical wavefront centered at 
O and the conditions on the surfaces of the wedge and on the moving crack. The purpose of the 
present analysis is to compute the distributions of stresses and particle velocities inside the 
region of the cylindrical wave, particularly in the vicinity of the moving crack tip D. 

3. Method of solution 

Since the crack propagation is symmetric with respect to the surfaces of the wedge, it is enough 
to consider the diffracted wave pattern ABCDP, see Figure 2. The method of solutions is based 
on the observation that for the external disturbances that are considered here the particle 
velocity 

W = Ow/c~t (3.1) 

is self-similar, i.e., W is a function of O and r/ t .  In polar coordinates r, O, z, the governing equation 
for W (r, 0, t) is 

Journal of Engineering Math., Vol. 8 (1974) 281-290 



Crack from vertex of a wedge; elastodynamic analysis 283 

1 9 ( 0 W )  1 0 2 W  1 0 2 W  (3.2) 
r Or r Or + r 2 0 0 2  - -  C 2 9 0 2  

Introducing a new variable 

s = r/t ,  (3.3) 

the equation for W (s, O) follows from (3.2) as 

(S7-z)  02W ( 2s2"~aW 02W 
s 2 1 - ,  ~ + s  1 -  c2 ]~ss  + 002 - 0 "  (3.4) 

Within the region of the cylindrical wave ABCDP, the boundary conditions on W (s, 0) assume 
the following form: 

0 = 0 ,  s < c :  
0 <  0<  re/2, s = c" 

- r e /2<  0<zrc ,  s = c '  

0 = ~4rc, 0 < S < V :  

and 

W = W o , (3.5) 

W = Wo, (3.6). 
W = 0,  (3.7) 

ow/oo = 0 ,  (3.8) 

O = zTz , v < s < c: W = 0 .  (3.9) 

For s < c the following transformation 

fl = arccosh (c/s), (3.10) 

which is known as Chaplygin's transformation, reduces (3.4) to Laplace's equation 

02 W/Off 2 +02 W/O02 = O. (3.11) 

The real transformation maps the interior of the cylindrical domain with the wedge, Figure 2, 
into a semi-infinite strip in the 0-t3 .plane, see Figure 3, inside of which W satisfies Laplace's 
equation (3.11). The boundary conditions on W(fl, O) take the form as indicated in Figure 3. 
The harmonic function W may be written as the real part of an analytic function F(fl, 0), i.e., 

W = Re F(fl, 0). (3.12) 

The function F can, in principle, be obtained by conformal mapping techniques. Here we use the 
following Schwarz-Christoffel transformation which was employed by Achenbach [1] 

= ~+irl = sech[(f l- iO)/~] (3.13) 

to map the semi-infinite region onto the upper half of the l-plane, Figure 4. The boundary 
conditions shown in Figure 3 are converted into conditions on the real axis in the (-plane: 

~< ~o=- [ cosh { arcc~ c/v}] - ~ 
74 

~D< ~< 0: 
A 

B 

W = 0 ,  (3.14) 

OW/O, = 0 ,  (3.15) 

Figure 2. Pattern of wavefronts for the half wedge. 
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Figure 3. The O-fl plane. 
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Figure 4. Mapping on the ~-plane. 

0 <  4<  49 = [cos (n/2x)]- 1: W = Wo, (3.16) 

>4B: W = 0.  (3.17) 

The analytic function F(ff) satisfying the boundary conditions (3.14)-(3.17) should now be 
constructed. From (3.15), we conclude that F '  (~), where prime denotes the differentiation with 
respect to the argument of the function, is real in the interval 4D < ~ < 0 of the real axis. Along 
the remaining portion of the real axis, F'(~) is imaginary. Also since there is a discontinuity in 
W at ~ = ~B, we should expect a simple pole at this point in the expression for F'(~). The function 
F'(~) satisfying the foregoing requirements can easily be constructed (see, for example, 
Muskhelishvili [6] ) and is of the form 

F'(~) = i A / ( ~ -  ~o)�89 ~ ( ~ -  ~B), (3.18) 

where A is a real constant. The harmonic function W may, then, be obtained as 

W = R e  -~(U--~D)~U~(U--~B ) + C . (3.19) 

The appearance of the radicals (~ -  ~D)~ ~ in (3.18) and (3.19) requires that branch cuts must 
be introduced to render the expression F'(~) and W single valued. The condition (3.14) along 
the real axis in the region - o e  < 4 <  ~D shows that C - 0 .  However, for 0 <  4 <  ~ ,  W has a 
non-zero real part contributed by the integral along the semi-circular portion of the path above 
~B- By applying the boundary condition (3.16), we find that 

~ (3.20) 
A = 

The equation (3.19) with C - 0  and A defined by (3.20) satisfies the conditions (3.14)-(3.17). 

4. Stress and particle velocity fields 

The relevant shear stresses in longitudinal shear motion are given by 
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~o~ = ( ~ l r ) ~ w l a O  , 

and 

285 

(4.1) 

(4.2) 

It can be easily checked that the derivatives of these shear stresses with respect to time can be 
written as 

and 

To~ = ~-Re t , d  

dF ~ off) 
T r ~ = p R e  2~ Of~-r  " 

Employing (3.13) and (3.18) in (4.5) and (4.4), we obtain 

To~ = - ( A ~ / ~ r )  c o s  ( ~ / 2 ~ ) ( E l  G,  - ~2 ~2), 
and 

T,~ = - (Ap/~r) cos (~/2~) ct (Et 62 + E2 G,)(c2 t ~ - r2) -~ , 

where 

E ( f ,  O, ~) = E 1 + iE 2 = [1 - ~D cosh { ( f - i O ) / z } ] - } ,  

sinh [ ( f i-  iO)/ • 
G(fl, O, ~) = G, + iG2 = cos (n /2•  [ ( f i - iO)/n]"  

and 

To compute the particle velocity, we observe that 

c~W/c~t = ( -  r/t)~qW/Or. 

Using Eq. (3.18), we obtain 

~ W  r R e  dF ~ Off 
Ot t d~ Off ~r ' 

which can be rewritten as 

~W 
- -  - - r  ) z . ~ t  (Ac/~:) c~ G2 + E2G" l)(c2t2 ~ -~- 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

5. Dynamic stress intensity factor 

To study the dynamic stress intensity, the shear stress near the tip of the crack must be in- 
vestigated. To this end, we introduce a new set of polar coordinates (R, r as shown in Figure 5. 
By using trigonometric relations within the triangle, we find 

C 

Figure 5. Polar coordinates centered at the moving crack tip. 
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%~ = z0~ cos r + z~ sin r  

From Figure 5, we get 

0 = zzr-arc tan  [R sin O/(vt+R cos q~)] 
r 2 = R2+v2t2+2Rvt cos q~. 

In the limit of small R/vt, we can make the following simplifications: 

0 ~ ~ n - R  sin r  
r ..~ vt+ R cos r  

and 

~ Z~ + [ ( R / , 0  cos  r  (a - ~/c~)  - 

Using the expressions (5.4)-(5.6), we can write for small R/vt 

cos  0 /~  ~ - 1 + (~)(R sin r  ~ 

sin O/z ~ (R/vt) sin q5 

cosh fl~~ - ( ~ + 1  1 R C~ dp/vt (~D 
(1 -v~ /c~)~  

and 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

sinh fi/z ~ (1/~ 2 - 1) ~ . (5.10) 

From (4.5) and (4.6), we note that the stresses depend on E and G. Hence, (4.7) and (4.8) need 
to be rewritten in terms of R and r Substituting the expressions (5.7)-(5.10) into (4.7) and 
separating the real and imaginary parts, we obtain 

and 

1 (1-v2/c2~ ~ IRt_) ~ ~[1-v2/c 2 sin 2 qh]~+cos r162 
E1 = 2 -~ \ 1 - ~ 2  j - -  ( 1 Z - v 2 ~ s i n  2~b ' (5.11) 

1(1 -v2 /c2]  ~ (~_)~ {[1"v2/c 2 sin 2 e ] ~ - c o s  qh}~ 
E2 -- 2~ ~ _ ~ - j  1 _ v 2 / c  2 s in2 q~ (5.12) 

Separating the real and imaginary parts of (4.8), we get 

sinh - fi cos - os cosh - cos - cosh - sinh - sin z 

c o s ~ - c o s h - z c o s ~  + inh sin 

and 

0)  sincos cosh-~ sin-O o s ~  cosh cos + sinh 2 0 0 

cos - c o s h -  cos + inh sin 

In the limit of small R/vt, (5.13) and (5.14) reduce to 

G 1 (1 2 • = - @)~/[1 - ~D COS (n/2Z)], (5.15) 
and 

G 2 = 0 .  (5.16) 

Substitution of the above expressions of E 1, E2,  G 1 and G 2 in (4.5) and (4.6) and subsequent 
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integration with respect to time t yields the shear stresses in the vicinity of the crack tip and 
they are 

. t " ~ [(1--v2/c2)(1--~2)]+ C0S(7C/2~) ~[1--v2/c 2 s in  2~ ,b ]4q-cOsq~[  4 

z~ 2 4 # A ~ v R )  (~D COS ~/2~--1) [ 1--V2/C 2 sing q~ J ' 

and 

(5.17) 

, ( 1 - ~  g ~ (  t ~4 cos(rc/2~) { [1 -v2 / c  2s in /~b]4-cosqS}  4 
z ~ =  - 2 ~  #A i__V2/C2/] \ ~ v R /  (~D COS rc/2x-1) 1--V2/C 2 s in  2 q~ " 

(5.18) 

Substituting (5.17) and (5.18) into (5.1), we obtain the shear stress zr in the vicinity of the crack 
tip : 

%z = k~q~,/R4 , (5.19) 

where dynamic stress intensity factor 

k~ = 24#A [(1 - v ' / c 2 ) ( 1 -  Cg)]�88 cos (7c/2x) 
n4 (r cos ~/2~ - 1) (t/v)~' (5.20) 

and 

o : 4 2  
1-v2 /c  z sin 2 ~b cos q~ 

1 / [ 1 - v 2 / c  2 sin 2 ~b]4-cos ~b~ ~ 
- (1-v2/c2) 4 ( 1 -v2 /c  2 sin 2 q5 t sin ~b. (5.21) 

Employing (4.6) and (4.9), the particle velocity in the vicinity of the crack tip can easily be 
evaluated as 

W ~ kw q)w/R 4 , (5.22) 

where 

( 1C~g _q~ ( ~ ) ~  c~ 
k w = 24 #A \ 1 - v2/c2/ (r cos 7r/2~- 1)' (5.23) 

and 

I[1-v2_/c2sinZqS]~-cos(a}4 
~w = ( . 1 -  v2/c 2 sin 2 q5 " (5.24) 

For v/c ~ 1, i.e., when the length of the crack is very small when compared to the distance 
travelled by the cylindrical wavefront, we observe that 

~D ~ O, A = Wo/[rc cos(rc/2~)] and ~,  = 24 cos(~b/2). (5.25a, b, c) 

The shear stress z~z then reduces to 

%== #Wot cos(r ~ , (5.26) 

where l= vt is the length of the crack. 
Now we consider two special cases. When z =�89 the problem reduces to the case of a per- 

pendicular crack propagating from the surface of the half-plane. For ~ =�89 we note that 
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and 

40 = - (2c2/v2 - 1)- 1, 

V. K. Varatharaju lu  

(5.27) 

= - 1 .  (5.28) 

Substituting (5.27) and (5.28) in (5.20), we obtain the stress intensity factor k~ for the perpendic- 
ular edge crack: 

k~ = (2#W0/zc) (t/v) ~ . (5.29) 

When • = 1, the faces of the wedge coincide into a semi-infinite crack subjected to anti-plane 
tearing under prescribed displacements. The problem, thus, reduces to the case of a semi- 
infinite crack propagating in its own plane. For ~ =  1, we note from (3.14) and (3.16) that 

4 0 = - v / c ,  and 4B= oo. (5.30) 

In view of (5.30), (5.20) gives 

2 ~ Wo/~ ( c 2 ~ q  ~ 
k~ - (5.31) 

\ v /  7ZC 

6. Solution of the quasi-static problem 

In this section, let us assume that the faces of the wedge are displaced very slowly so that time 
enters only as a parameter. The position of the crack is shown in Figure 6, where I denotes the 
length of the crack. Since the crack propagates in a plane of symmetry with respect to the faces 
of the wedge, the displacement w vanishes in the plane of symmetry ahead of the crack tip. 

The governing equation for this problem is merely Laplace's equation in W 

r Or ~ + r2 ~0 ~ -  O. (6.1) 

The boundary conditions on W (r, 0) are: 

0 = 0 ,  0 < r < I ;  ~ W / 3 0 = O  (6.2) 

0 = grc, r > 0  ; W = - W  o (6.3) 
0 = - z r c ,  r > 0 ;  W - - - W  o. (6.4) 

A A 

'(r \ R 
I 

Figure 6. Cracked wedge. 
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To solve Laplace's equation (6.1) for W, we employ an elementary conformal transformation 
to map the wedge with the crack onto the upper half of ~-plane, Figure 7, 

z = I e '~ (~2_ 1)~. (6.5) 

The boundary conditions on W now take the form at t/= 0: 

< - 1  ; W = W  o (6.6) 
- 1 <  ~ < 1  ; 0 W / ~ t I  = 0 (6 .7 )  

> 1  ; W = - W  o. (6.8) 

The analytic function satisfying (6.6)-(6.8) is clearly 

F'  ( ~) = - iZWo/z~(~  2 - 1) + (6.9) 

To study the shear stress in the vicinity of the crack tip we introduce local polar coordinates 
R, q5 at the crack tip D, see Figure 6. The derivative of shear stress with respect to time T+z may 
then be written as 

_ /~ 0W ( 6 . 1 0 )  T~z R ~ q ~ '  

where T~ = ~ z / ~ t .  It can be easily checked that (6.10) may also be expressed as 

T4,~ ~ d F  ~ Oz (6.11) 
= ~ R e  d~ ~z Oq5 

From (6.5), we compute 

(1/) I Q~)l/nl �89 0~ _ 1 x/. z 1/*- 1 1 - (6.12) 
~z 22 

and 

~z 
- - =  R i e  i4~ . (6.13) 

Substituting (6.9), (6.12) and (6.13)into (6.11), employing the relation 

z = l + R e  i4' , (6.14) 

and integrating the result with respect to time t, we obtain 

l tWo t iRei~ I1 + ~ e  i4'] 

T4'z - rclR Re R ei,~\ 

For R / l <  1, (6.15) reduces to 

zoz =/~W 0 t cos (c~/2)/rc(xlR)* (6.16) 

which agrees with (5.26). This means that the shear stress Z,z for the quasi-static case is equal 
to that for the dynamic case when the velocity of crack propagation is very low compared to 
the shear wave velocity. 

In conclusion, it may be remarked that the significance of the problem presented for ex- 
perimental research is that it is possible to apply the loads on the surfaces of the wedge than on 
the surfaces of the crack. To the author's knowledge, elastodynamic experimental investigation 
for anti-plane case has not yet been carried out. For in-plane case, extensive experimental work 
has been done for the static case. The possibility of extending the static Griffith-Irwin theory 
of fracture mechanics in the dynamic problem of a running crack on a model of epoxy plate 
with central notch has been investigated by Kobayashi et al. [7]. Based on their study, it may 
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be speculated that experimental result might agree closely with the analytical work for the 
case when the velocity of crack propagation is substantially lower than the shear wave velocity. 
For higher velocities, however, good agreement may not be obtained, see [-7]. 
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